Quantum Chemistry

Chapter05 - Home
Exercises: 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 26 - 27 - 28 - 29 - 30 - 31 - 32 - 33

Exercise. This is the solution to exercise 5.1 in the book.

Solution. We need to show that

x(t) = Asinωt + Bcosωt

verifies

md2x dt2 + kx = 0

We have

d2x dt2 = Aω2 sinωt Bω2 cosωt

Hence

d2x dt2 = ω2x

If

ω = k m

then

md2x dt2 + kx = 0